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Abstract

Several improvements have been done on space charge
calculations in the PIC code ORBIT[1], specialized for
high intensity circular hadron accelerators. We present re-
sults of different Poisson solvers in the presence of conduc-
tive walls.

1 PIC TRACKING WITH SPACE
CHARGE

ORBIT uses a split operator technique. PIC particles|2}
are propagated in the bare lattice using maps generated by
MADIJ3]. Then, space charge transverse momentum kicks
and longitudinal energy kicks are applied.

2 DIFFERENTIAL POISSON SOLVERS

To find the scalar electric ¢ and the magnetic vector
potential A, the herd is binned on a grid according to
(2. y.cA¥) to find the charge density p, and according to
(Do 2ys Ap/p), to find the current density J. Then, we
solve the partial elliptic differential equations (Poisson’s)
for@ = P

Vo) =42 . wip=-12 ()

In ORBIT we implemented two differential 2D solvers
(i) LU Decomposition plus matrix multiplication, and (ii)
Successive Over Relaxation (SOR).

For {i). express the Laplacian operator V> in discrete
formon a A x N grid that extends to wall. For the first of
Egs.(1) it is (the second is formally identical):

~dmpy; = LA By B(P)=—=L7'0(Q) ()
- this is an A7 x N2 band-sparse matrix (5 is Kronecker’s),
whose inverse is unfortunately not sparse (Fig.1) -

L8 = —dotoh + ok, o + 88 0% + okat |+ olol_
and multiply the inverse by the (1 x Ny g

For (ii), solve by iteration, starting with a guess. At step
I; + 1 the discretized Poisson’s is

@Hl 1 (‘I’l—l J +‘I’u+l +f, gt ‘I - pij) -
Since the beam density evolves slowly from one space
charge node to the next, iterative techniques show rapid
convergence.
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Figure 2: Solving wiih perfectly conducting walls

Better iterative procedures used were: Basic SOR (most
efficient for small grids, A/, N < 128), SOR with Cheby-
chev acceleration (large grid), and Conjugate Gradient, that
showed the most rapid convergence.

Fig.2 schematically shows how to achieve a solution of
the system of Eq(2). Walls are represented by n empty
dots. the interior by m full dots. The system of equations is
exactly determined: n + . known quantities, i.e. ® =0 at
the 17 empty dots and p at the m full dots; sn.+n unknowns,
i.e. m values of ¢ to be calculated at the full dots and
Pimage at the n empty dots,

3 3-D TREATMENT OF SPACE CHARGE
Basic ideas:
e Space is the independent variable;

* To solve Poisson with all particles at the same time,
at each space charge node in the lattice we expand the
beam (Fig.3);

¢ 3.rd dimension is obtained by slicing the beam (Fig.4)

We use a iransverse grid termunated at wall boundary,
and a longitudinal grid that covers the length of the beam
bunch. For long bunches in synchrotrons it is reasonable to
make longitudinal grid steps much larger than in the trans-
verse dimension. This is justified since (i) the space charge
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Figure 3: Expanded matched beam. Beam envelope is also
shown
PAC2001

Figure 4: Slicing a beam. Wavy lines: envelope of the
beam (3-wave). Dashed vertical lines: planes where to
solve Poisson

distribution varies smoothly along the beam, and (ii) the
motion along the beam is much slower than in the trans-
verse.

We cut the beam in slices, long enough that the average
-density, the transverse aspect ratio of the slice, and the wall
configuration around the slice can be considered constant.

oy, 2) = poxy) pi(2)-

and only solve the 2D transverse problem simultaneously
in each slice by parallel computation, A slice length is a
fraction of the distance between successive envelope waists
and is associated with the local wall configuration, stored
together with the the transfer maps to completely charac-
terize the machine. A similar approach is been used by
L.G.Vorobiev et al at Michigan {4] {5].

4 COMPARISON OF 2-D SOLVERS

We compared the SC field calculated with integral
solvers (BF and FFT, of a previous version of ORBIT) with
a SOR differential solver on a 236 x 256 grid, conductive
walls, and a Gaussian random beam in the chamber center
(Fig.5).

The BF field goes to zero at large distance, while SOR
ends at the walls with a finite value, where the image charge
density is equal to the field and the field lines are perpen-
dicular. The sum of the image charges equals the total of
the real charges. In this case the images are uniformly dis-
tributed.

Another example: potential and image on the walls cal-
culated with for a Gaussian distribuied beam off center in
the chamber (Fig.6).
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Figure 6: Beam offset in 2 and y in a square chamber. (a)
real charge and image charge, (b) p, &, and £

5 3-D FORCES IN A LONG BEAM

Transverse kicks depend on the transverse aspect ratio of
a slice (Fig.7). For the same 4, the force is on the average
larger where the value of the Twiss § function is smaller,
and vice-versa. This is shown in Fig.7 and Fig.8 from a
SOR simulation of a FODO lattice.

Once we have ®, the space charge force and the momen-
tum kick on each macro are

F(P)=%5YVe : ==L fFar 3)

T T p
With df = At = L/j¢, the transverse momentum kick
and the longitudinal energy kick are

2 = PRl )

Spo 3
LJ— ax

T T

with the separation between successive transverse SC
kicks L, . the separation between longitudinal kicks L),

Figure 7: Sliced expanded beam in 3D. The aspect ratios
of different slices are evident
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Figure 8: (a) SC force F, vs. = in each of a 40-slice beam
whose central slice is in a defocusing lattice location, (b)
SC force Iy vs. y
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Figure 9: Maximum transverse kick in a 9-slice beam
(AGS) compared with 2D calculation

the perveance
_Axdghre
p= Ax3my’

with A the charge per unit length and Ax the size of a
square grid cell.

Transverse kicks depend on the transverse aspect ratio
of a slice. For the same ¢, the force is on the average
larger where the value of the Twiss 3 function is smaller,
and vice-versa (Fig.9).

A longitudinal kick calculated from the difference of po-
tential between analogous (. y) points in the median trans-
verse plane of successive slices (Fig.10) is compared with
the traditional formula for a beam of radius « in a round
pipe of radius b [6].

N b
(AE)S(, 104 Zq',:,;—l_—l [1 +2In - + f(;)] (5

Zy is the impedance of free space and ‘A’ the charge gradi-
ent along the beam.

Fig.11 is a 3D rendition of the longitudinal force vs. x
in the horizontal plane y = 0.
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Figure 10: Longitudinal SC energy kick in a 9-slice beam

(AGS). Each line: distribution of kick for various v, y.
Thick line: simulation that uses the standard equation

Figure 11: Longitudinal energy kick in 3D
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